116 research outputs found

    TRMT2A is a novel cell cycle regulator that suppresses cell proliferation

    Get PDF
    During the maturation of transfer RNA (tRNA), a variety of chemical modifications can be introduced at specific nucleotide positions post-transcriptionally. 5-Methyluridine (m5U) is one of the most common and conserved modifications from eubacteria to eukaryotes. Although TrmA protein in Escherichia coli and Trm2p protein in Saccharomyces cerevisiae, which are responsible for the 5-methylation of uracil at position 54 (m5U54) on tRNA, are well characterized, the biological function of the U54 methylation responsible enzyme in mammalian species remains largely unexplored. Here, we show that the mammalian tRNA methyltransferase 2 homolog A (TRMT2A) protein harbors an RNA recognition motif in the N-terminus and the conserved uracil-C5-methyltransferase domain of the TrmA family in the C-terminus. TRMT2A predominantly localizes to the nucleus in HeLa cells. TRMT2A-overexpressing cells display decreased cell proliferation and altered DNA content, while TRMT2A-deficient cells exhibit increased growth. Thus, our results reveal the inhibitory role of TRMT2A on cell proliferation and cell cycle control, providing evidence that TRMT2A is a candidate cell cycle regulator in mammals

    Modeling Local Coherence: An Entity-Based Approach

    Get PDF
    This article proposes a novel framework for representing and measuring local coherence. Central to this approach is the entity-grid representation of discourse, which captures patterns of entity distribution in a text. The algorithm introduced in the article automatically abstracts a text into a set of entity transition sequences and records distributional, syntactic, and referential information about discourse entities. We re-conceptualize coherence assessment as a learning task and show that our entity-based representation is well-suited for ranking-based generation and text classification tasks. Using the proposed representation, we achieve good performance on text ordering, summary coherence evaluation, and readability assessment. 1

    The Radio to Infrared Emission of Very High Redshift Gamma-Ray Bursts: Probing Early Star Formation through Molecular and Atomic Absorption Lines

    Full text link
    We evaluate the broadband afterglow emission of very high redshift gamma-ray bursts (GRBs) using standard relativistic blastwave models with both forward and reverse shock components. For a broad range of parameters, a generic property for GRBs at redshifts zz \sim 5--30 is that the emission peaks in the millimeter to far-infrared bands with milli-Jansky flux levels, first at a few hours after the burst due to the reverse shock, and then again for several days afterwards with somewhat lower flux due to the forward shock. The radio, submillimeter and infrared continuum emission should be readily detectable out to z \ga 30 by the Atacama Large Millimeter Array (ALMA), Extended Very Large Array (EVLA), Square Kilometer Array (SKA) and other facilities. For relatively bright bursts, spectroscopic measurements of molecular and atomic absorption lines due to ambient protostellar gas may be possible. Utilizing models of primordial protostellar clouds, we show that under certain conditions, appreciable absorption may be caused by HD rotational transitions even in metal-free environments. After sufficient metal enrichment, absorption from CO rotational transitions and [OI] fine-structure transitions can also become strong. With appropriate observing strategies in combination with optical telescopes, ALMA and/or SKA may be able to detect such lines, offering a unique probe of physical conditions in individual Pop III and early Pop II star forming regions. We also remark on potential near-infrared absorption features due to electronic transitions of H2_2.Comment: MNRAS, in press; 16 pages, 11 figure

    Secondary predication and the distribution of raising to object

    Get PDF
    In Den Dikken (2017b) arguments are presented for a predicational approach to hyperraising and copy raising constructions in which the ‘raised’ DP serves as the subject of the matrix clause. In this sequel, I show that hyperraising and copy raising also occur in secondary predication constructions embedded under propositional attitude verbs such as consider. An examination of the properties of these hyperraising and copy raising to object constructions leads to the conclusion that overt subject-toobject raising (‘object shift’) definitely exists in English but is obligatory only for subjects of small-clause complements of verbs. Apart from yielding a clearer perspective on the distribution of overt object shift in English, the study also delivers a unified account of a variety of restrictions on the subject of the non-finite complement of propositional attitude verbs

    Quantum Dots for Live Cell and In Vivo Imaging

    Get PDF
    In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Get PDF
    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Full text link
    corecore